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We discuss in a definite example the complications arising from the introduction of nonzero angular
momenta in a dispersion model for three-body decay or production, based essentially on the elastic approxi-
mation in each subenergy channel. First we define production or decay amplitudes free from kinematical
singularities. Then it is shown that a convenient choice of these amplitudes leads to integral equations to
which the conclusions found in an earlier work in the zero-angular-momentum case apply for the most part,
especially as regards three-body unitarity. Further details are given in the case of a three-pion final state.

I. INTRODUCTION

N a previous work! (hereafter referred to as I), we
have considered a model for three-body decay or
production processes based on the elastic approxima-
tion in each subenergy channel. The study was restricted
to the case of a spinless particle (or a spin J=0 pro-
duction state) decaying into three final particles inter-
acting pairwise in S-wave (I=0) states only.

Our present aim is to extend the discussion to the case
of higher angular momenta. For definiteness we con-
sider the simple case J=1, /=1, which is of great
practical interest, especially in studying the three-pion
system. Many notations and derivations have been
already encountered in I; in the present paper, we just
examine in more detail the new complications arising
from the introduction of nonvanishing angular mo-
menta. The model is here also named the Khuri-
Treiman (KT) model.

The kinematical aspect of the problem is considered
in Sec. IT; our attention is particularly focused on the
kinematical singularities that we have to get rid of
before writing dispersion integrals. In Sec. I1I, we pass
to the derivation of the integral equations themselves;
kinematical singularities and problems of convergence
lead us to work with reduced amplitudes to which the
main considerations of the case J=0, =0 apply, es-
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F1c. 1. (a) The three-particle production process. s=(3_: ¢:)?
is the square of the total three-body mass; s1= (g2+¢s)? is a final-
state subenergy variable. (b) The process after particle (1) has
been crossed. Both processes are also considered in the text as
quasi-four-leg reactions in which 4/s is the mass of a fictitious
particle of spin J and helicity A;.

* Laboratoires associés au Centre National de la Recherche
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1R. Pasquier and J. Y. Pasquier, Phys. Rev. 170, 1294 (1968).
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pecially as concerns three-body unitarity. The required
symmetry properties and the physical meaning of the
kernels of the integral equations are investigated in
Appendix B. In Appendix A are collected the kinemati-
cal formulas needed in the text. The three-pion case is
examined with further details in Appendix C; in partic-
ular, isospin is introduced and the requirements of
Bose-Einstein statistics are discussed.

II. KINEMATICS OF A PRODUCTION REACTION

For the sake of completeness, we recall here some
general properties related to the partial-wave expansion
of a production amplitude. Indeed many of the follow-
ing derivations remain valid in the case of a decay with
some convenient accommodations.

The production amplitude R(p,q) that we consider is
illustrated in Fig. 1(a). pu (u=1, 2) and ¢; (i=1, 2, 3)
denote the four-momenta of the initial and final parti-
cles, respectively; for simplicity they are all assumed
spinless and of mass unity. Such an amplitude depends
upon two momentum-transfer invariants and three
energy invariants which we choose to be the total
energy variable in the cm. system, s=(_u pp)?
=(3"iq:)?% and two of the subenergy variables
si=(g;+qn)? related by >, s,=s543.

The general form of the partial-wave expansion of
R(p,9) in the total (or s) c.m. system reads?:3

RG)=5 % QI+1)

J Ai=—J
X Du”™ (7 (@) E(P)IR74(s,{s:}), (2.1)

where 8(p,) and 8(q;) stand for the rotations which
transform a fixed given frame into body-fixed frames,
which we also call 8(p,) and &(q.), associated with the
two initial collinear and three final coplanar momenta,

2L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962).
3D. Branson, P. V. Landshoff, and J. C. Taylor, Phys. Rev.
132, 902 (1963).
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respectively. The notation specifies that p, and q; play
a privileged role in the orientation of these frames.
More explicitly, the z axis of &(p,) is chosen in the
direction of p, and the x-z plane is defined up to an
arbitrary rotation around this momentum, which
allows one to take the second subscript of the O func-
tion* equal to zero.? As regards 8(q;), two alternatives
are generally considered. They correspond either to a
choice of the z and y axes in the direction —q;= q;+q,
and ¢,X g;, respectively, 2 3 5 or to a choice of the x and
z axes in the direction q; and q;Xq;, respectively.®5=7
[In both definitions (4, ,k) stands for a cyclic permuta-
tion of (1,2,3).] Notice that the first subscript A; of D
in Eq. (2.1) always represents the projection of the
angular momentum J along the z axis of §(q;).

The two preceding choices are referred to below as
(k) and (¢), respectively. Indeed we shall be essentially
concerned with the choice (%). The choice (f) has
been used elsewhere in other approaches of the three-
body problem,® and for completeness we recall occa-
sionally some obvious properties concerning it. With
the choice (%), Eq. (2.1) reads, explicitly,

J
R(p,9)= E; 2 (2741) D07 (Biyes,0)
Ai=—J
X RJM(S:{‘YI'}) ]

where o; and 8; are the polar and azimuthal angles of
py in the frame &(q;), as shown in Fig. 2(a) for p and ¢
equal to 1.

Of course, depending on the choice of the privileged
final momentum q,, different expansions of the type
(2.1) [and thus (2.2)] are obtained. It is quite simple to
compare the corresponding projected amplitudes,
thanks to the orthogonality and group properties of the
D functions. We get in this way for ¢, j=1, 2, 3:

(2.2)

R74i= é , D™ (81 (q;)8(q))R74i. (2.3)

Aj=—
With the choice (%) for 8(q;), the Euler angles associated
with §1(q;)8(q:) are (0,X;;,0), where X;; is the oriented
angle between —q; and —gq; in the s c.m. system.
Equation (2.3) then reads

J
R7i= 37 dan (X)) R7A,

(2.4)
Aj=—J
With the choice (¢) we have the diagonal relation
J
RIJAi= Z 5AiAjeiA,'x,'iRtJAj ; (2.5)
Aj=—J

4 See, e.g., D. M. Brink and G. R. Satchler, Angular Momentum
(Oxford University Press, New York, 1962).

§S. M. Berman and M. Jacob, Phys. Rev. 139, B1023 (1965).

6 J. Werle, Phys. Rev. Letters 4, 127 (1963); Nucl. Phys. 44,
579 (1963).

7R. L. Omnés, Phys. Rev. 134, B1358 (1964).

8J. L. Basdevant'and R. E. Kreps, Phys. Rev. 141, 1398
(1966) ; 141, 1404_(1966).
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the subscript ¢ means that we are dealing with ampli-
tudes different from those of case (4); they are indeed
simply linear combinations of them.

The summation over A; in Egs. (2.3) and (2.4) may
be further reduced by taking account of parity conser-
vation. As is well known,’ ¢ the amplitudes R74¢ of
opposite A; satisfy

R7—Ai= y(— )/ +ARIA | (2.6)

where 7 stands for the product of the parity of the
initial state and of the intrinsic parities of the three
final particles. This yields, in particular,

R/0= ﬂ(—)JR'IO s

so that R”? vanishes for J odd, n=+1, and for J even,
n=—1. This allows us also to rewrite Eq. (2.4) as

J
R7Mi= 3 eenn (GORIM, A;20,  (2.7)

Aj=0
where e=1, en=2 if m=integer >0, and
eA,'AiJ(X)= %[dl\in"o()‘*' n(— )J+Aid—AinJ(X)] . (2.8)

Now, with the help of the preceding relations, it is
possible to investigate the kinematical singularities of
the partial-wave projections of R(p,q). For definiteness
we consider R74i, The study may be carried out by
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Fic. 2. The coordinate systems and vectors relevant to the
angular decompositions of Secs. IT and III. The present choice of
axes is referred to as (%) in the text. Moreover, the vector pu of
Eq. (2.2) is here denoted pi, (a) is in the c.m. of the three final
particles of Fig. 1(a). (b) is in the c.m. of particles (2) and (3) [seel
Fig. 1(b)].
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copying a method used by Wang?: first, R74¢ is ex-
panded over the s; c.m. angular-momentum states.
(The convergence of such an expansion within the KT
model was briefly discussed in Appendix A of 1.) The
coordinate system relevant for the decomposition is
shown in Fig. 2(b) : The s; c.m. frame is simply deduced
from &(qi) by a Lorentz transformation along —q;.2
The result is

RJAI(S,{S«[})=Z (211+ 1)dA10l1(012)RJllAl(S,éj) , (29)
15

where 615 is the oriented angle between the momenta of
particles 1 and 2 in the s; c.m. system (cf. Appendix A).
This shows that the kinematical singularities and zeros
in s2 (or s3), which all arise from the da,o"(612), can be
isolated by setting

R7M(s, {s:})= (3 Sin012)lA1|RJA1(S,{Si}) . (2.10)
Then Eq. (2.7) may be written as
R™M(s{s:})= L ManR7(s,{s:}), (211
Ag==0
with
T gy = €ay(2/5i0010) Mrleg 4 7 (Xor) (3sindog) 2ol (2.12)

(The definition of 83 follows from that of 612 by a cyclic
permutation over the indices.) Equation (2.11) implies
that the kinematical singularities and zeros in s; of
R/ are all in the explicitly known factor M a,a,, since
R7% has none. We may thus define “regularized”
amplitudes R741 through

R784(s,{s:}) = Bra, @ X R741(5,{s}) ,

where the functions 871, may be deduced from Egs.
(2.10) and (2.12); their expressions are given in Ap-
pendix A for J=1, n==1, (recall that R¥*=0 for
7=+1).

Similar relations hold between any R74¢ and Ruai;
the associated Bsx;™ follow from Bsa,™ by a cychc
permutation over the indices. It is worth noticing the
simplicity of such equations: All the kinematical ana-
lytic structure is contained in the factor 8, whereas the
remaining part R just contains the dynamical informa-
tion. Had we worked with the amplitudes R,74i, it
would not have been possible toseparate the kinematical
from the dynamical analytic structure in such a simple
way. Notice also_that, as a consequence of Eqs. (2.7)
and (2.13), the RV A’(s,{s,}) are related by

(2.13)

J
R7i(s,{s:))= ¥ M, R74(s{s),  (2.14)
Aj=0
where
M= (1/Bra)ensenin;” Xii)Bra; . (2.15)

9L. L. C. Wang, Phys. Rev. 142, 1187 (1965).
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Now, what remains to be done is to look at an even-
tuality that we have forgotten for a time: It may
happen!® ! that the matrix i in Eq. (2.11) [or 7 in
Eq. (2.14)] is degenerate for particular values of the
variables (we do not consider the case in which these
matrices reduce to one element, as for J=1, n=-1).
Then its different rows no longer remain independent,
and suitable combinations of the R7Ai (RVA%) must
vanish at these points. The study of such kinematical
constraints is easier in the present context by returning
to Eq. (2.2), instead of analyzing the zeros of the deter-
minant of M (or M); if we restrict ourselves to the
J=1, 5= —1 case, this equation reads for =2, 1

R= Cosa ,3,70(2) EIR0@)

—V2 cosfs sinasy ,BJl(g)(") ﬁ“(” s (216)
= cosa Broy O ROD
—V2 cospB1 sinay Br1q) R, (217)

The first expression tells us that R has no kinematical
singularity in s; since each term has none (see Appendix
A). As a consequence, the combination (2.17) must be
also regular in 51, although each term indeed has poles
at s1=(+/s==1)2, as follows from the values of Bs4,
and of the trigonometrical lines of @; and B1 (see Ap-
pendix A); this implies that

2(+/5) RO L2V (51,50) RO = O (f12)

at s1=(y/s==1)? (see Appendix A for the definition of
N,). Correspondingly, one of the R4 [remember the
diagonal relation Eq. (2.5)] has a zero at the same
points. At this stage, these conditions just express the
fact that different projections of a given amplitude R
cannot take on independent values at some special
points. A more usual interpretation of them will be
encountered below.

(2.18)

III. DYNAMICAL MODEL

We are now in a position to extend to the case J50
the basic assumptions of the dynamical model presented
in I. Indeed, the regularized amplitudes R7ai(s,{s5:}) of
Sec. II [see Eq. (2.13)] just possess dynamical cuts
and appear as the equwalent of the decay amplitude
®(s,{s:}) considered in the case J=0, /=0 [the latter is
nothing but R (s,{s:})7]. Their analytlc structure is also
assumed only to take account of the elastic cut in each
subchannel s; of the five-leg process in Fig. 1; also, only
a finite number of angular momenta is retained in the
expression of the associated discontinuities.

As in I, such amplitudes are expected to represent at
the same time three scattering reactions as in Fig. 1(b)

10 G, Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N. Y.) 46, 239 (1968).

11 S, Frautschi and L. Jones, Phys. Rev. 164, 1918 (1967).

123The indices between brackets recall the index of A, ie., the
privileged axis of projection.
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and a production (or decay) reaction as in Fig. 1(a),
thanks to convenient analytic continuations; recall that
for 29, the physical regions of all these reactions are
bound by the same cubic curve!® associated with the
quasi-four-leg processes of Fig. 1 with m=+/s as the
mass of a fictitious particle. This assumption allows us
to evaluate the two-body discontinuities of these
amplitudes for values of the invariants in the physical
region of the “scattering” process [Fig. 1(b)]. The
integral equations are also first written in the same
region and then analytically continued up to the decay
(or production) region [Fig. 1(a)].

It happens that in such continuations the relations
(2.14) and (2.18) which we shall impose between the

7Ai remain unchanged, since the matrix M is free from
branch point singularities. An important feature is that
in the scattering region these relations are identical with
the usual “crossing” relations®:10:15 and the kinematical
constraints!®6 considered for the regularized helicity
amplitudes. This means that one may associate a
helicity amplitude with any R7A¢ and consider it as the
analytic continuation of the projected amplitude R74¢
defined in Sec. II; the R,74¢ which are linear combina-
tions of the R4 would then correspond in the same
way to transversity amplitudes.!® Of course, such a cor-
respondence!” is already implicit in Sec. II, since almost
all the methods used to exhibit kinematical singularities
in the decay region are the analogs of well-known
methods used for 2 — 2 helicity amplitudes.®®® These
remarks also agree with an assumption which we could
have formulated at the beginning: The development
(2.1) derived in the decay region may as well be ob-
tained by a two-step procedure as follows:

(a) First, the five-leg amplitude R is considered under
the aspect of Fig. 1(b) and expanded over the angular-
momentum states of the subenergy +/s. As noted else-
where,? with the choice (%) of axes considered in Sec.
IT this expansion involves amplitudes which have the
same properties as the helicity amplitudes associated
with a scatteringlike reaction, also illustrated in
Fig. 1(b).

(b) Then the result is analytically continued up to
decaying values of +/s.

Let us now examine the implications of the model in
detail. First, it is worth mentioning that the elastic
approximation and the limitation of the number of

13 T. W. B. Kibble, Phys. Rev. 117, 1159 (1960).

“From now on, we use the word ‘“decay” for decay or
production.
( ;;’91; L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 7, 404

1 .

16 H. F. Jones, Nuovo Cimento 50, 814 (1967).

17Y. Kim, Phys. Rev. 125, 1771 (1962) attempted to relate
decay and scattering amplitudes in the nonzero-spin case by work-
ing with spinor invariant amplitudes. These, and the helicity (or
transversity) amplitudes that we consider in the present work,
appear thus to provide two sets of amplitudes which can be used
in decay problems for particles with spin, just as in the scattering
problems (Refs. 15 and 16).
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partial waves essentially reduce the amplitude resulting
from the model to a sum of three components, each of
them corresponding to a subchannel s; and possessing
just the associated elastic cut. More explicitly, we shall
always have

Rone Reah R/ R4 RS (B.)

thus from Egs. (2.13) and (2.2):
R74i=Ro74i4 Ry 744 Ro74i4-Ry744, (3.2)
R=Ro+Ri+Re+Rs, 3.2

with obvious notations. In Eq. (3.1) Ro74 stands for
processes not induced by two-body interactions, while
R;7% has to be understood as the contribution of the
s; to the s; two-body channels. R
However, at this stage, we know about the R;74¢ only
that they possess the elastic s; cut with the same dis-
continuity as R74¢ itself. As shown in I for J=0, if only
the subenergy partial wave /=0 is retained in two-body
unitarity, this input alone is sufficient to build up a
model which satisfies some convenient properties:

(a) The integral equations of the model converge
under conditions of practical interest and involve the
unknown functions under only one integration.

(b) As in the usual isobaric models,® the angular de-
pendences [i.e., the D7 and the d* functions of Egs. (2.2)
and (2.9)—the second is indeed trivial if /=07 appear
explicitly in the resulting amplitude.

(c) Three-body unitarity can be nearly satisfied
under conditions of practical interest.

On the other hand, for /520, many ways appear pos-
sible when one wants to reconstruct the amplitudes
from their given discontinuities. Therefore, these only
generate an equivalence class from which we have to
pick the most appropriate amplitudes. A natural way
to proceed is to consider the above properties (a)-(c)
of the case =0 as conditions which must hold if /0.
Of course, we also require the amplitudes R74¢ resulting
from the model to be effectively the regularized pro-
jections of a decay amplitude and thus to satisfy the
kinematical relations (essentially crossing and con-
straints) derived in Sec. II. Since R7% has indeed the
form (3.1), one can fulfill this condition—referred to
below as (d)—by imposing it on each term on the right-
hand side of Eq. (3.1). By doing so, it is then possible to
work with only a restricted number of functions R;74¢
and define the others by Eq. (2.14); we choose here the
diagonal amplitudes R:74 as the basic ones, and for
definiteness specialize to Ry7At,

The expression for the two-body discontinuity of such
an amplitude is obtained by applying two-body uni-

18 S, J. Lindenbaum and R. M. Sternheimer, Phys. Rev. 105,
1874 (1957); M. Olsson and G. B. Yodh, Phys. Rev. Letters 10,

353 (1963); B. Deler and G Valladas, Nuovo Cimento 45, A559
(1966) (this work contains further references).
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tarity in the s; c.m. system of the process in Fig. 1(b).
This reads, formally,*

disc(gip1p2| R| gags)=2i % {(g1p192| R|q2'q5")
X{g2'qs’ | M1 gags),

where M is the 2— 2 scattering amplitude between
particles (2) and (3), and 3", stands for the two-body
phase-space integration over ¢’ and ¢;' with nondis-
torted contours for small s.

Such an equation can be reduced by expanding each
side in partial waves? (the relevant coordinate systems
are shown in Fig. 2). On the left-hand side it is con-
venient to use an expansion in the angular-momentum
states involved, in the c.m. system of the subenergy s;
this is the analytic continuation to small s values of the
expansion (2.2) with ¢=1. Notice that the trigonomet-
rical lines of a; and B; involved in this expansion are
free from singularities at s;=4 (see Appendix A). On
the right-hand side, the two-body amplitude M may as
usual be expanded over Legendre polynomials. As

(3.3)
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regards {(qip1p2| R|¢2'gs’), it is convenient to expand it
over the angular-momentum states of both the s and s;
c.m. system [the result looks like the combination of
Egs. (2.2) and (2.9) with the roles of / and J exchanged ].
Thanks to all these decompositions, the phase-space
integration Y, in Eq. (3.3) is easy to carry out; after
some straightforward manipulations we obtain

discR1741(s,51,59) = discR7M(s,{s:})
=2ip(s1) 2 (2h+1)M@*(sy)
h

da0t(012)
X RJIIAI(S)sl)_—_—" )

(3.4)
Bra ™ (51,52)

with p(s1)=Ki/s1. K1 and some trigonometrical lines
of ;2 are given in Appendix A. M® stands for the
l-wave projection of M in the s; c.m. system, and
R7uMi(s,5;) appears as the double projection of R over
both the J and ! angular-momentum states (it is the
same whatever the order of the projections). From
Eq. (2.9) we have, in particular,

+1
R7uM(s,51) =% RV41(s,51,59")da 0" (612")d cosbrs’, (3.52)
-1
+1 R

R7B81(s,51) = Ro/ 4Ry Tida(s,s1)+ 30 3 enseron” (Xor )Bras® (52,55 YRo722(5, 52,55 ) 10" (812')d cosbys’

A2>0 -1

+1
+ Z % €A36A3A1J(X31/)BJA3(']) (S3,,S1)R3"A3(S,S3I,Sl)dmoll (012/)d COSGIZ’ . (3Sb)
A3>0 -1

The last equation follows from the representation (3.2)
and the crossing property, Eq. (2.13). The primes on the
X’s and the subenergies (so'-+s3'+s1=s+3) specify that
they are functions of cosf,’.

Indeed, in the equal-mass symmetric case which we
consider, Eq. (3.5') may be simplified. To show this,
one can choose sy’ and s;3' as new variables in the first
and second integrals of the equation and express the
functions Bry,MRJAi=R /A, =2, 3, in terms of the
partial-wave amplitudes R;7%4i(s,s;) [see Eq. (2.9)].
Because these amplitudes, for the same values of / and
A, may be considered as the same function whatever
the choice of ¢ is (this assumption is further examined
in Appendix C), the two integrands appear as the same
function, one of s¢’, the other of s3’, to be integrated over
the same range of values. In the end, the contributions
of channels (2) and (3) to Eq. (3.5’) are thus identical.

Now, as mentioned above, different ways are open to
build up the amplitude Ry74t from the two-body dis-
continuity equation (3.4), in which we keep by now only

19Tn this form of two-body unitarity, the two-body squared
energy variables in M and R are taken below and above the two-
body cuts, respectively. One may write another form in which
these positions are exchanged. As noticed elsewhere (Refs. 24
and 37), both expressions are equivalent on the “principal” sheet
of the discontinuity.

the wave ;= 1. The more natural way is to write the dis-
persion relation for Ry jtself. However, by doing so,
the kinematical factor da!(612)/Bsa,(s1,52) of Eq.
(3.4) remains under the integral and this leads to two
main difficulties:

(1) It is not always possible to put the resulting
integral equations into a single variable form because
ss and the dispersive variable s;’ can mix together
in this factor (this is a polynomial of degree O or 1 in
52).

(2) The integral equations do not converge rap-
idly (this is a well-known difficulty of Cini-Fubini
approximations?).

Both these drawbacks may be partially removed by
splitting the dispersion integral into two parts: one in
which the rational part (this alone depends on s2) of
day0t(012)/Bra, ™ (s1',s2) is put outside the integral, the
other which does not possess the cut 512> 4 and can thus
be added to the inhomogeneous term. This procedure is
indeed equivalent to retaining only the wave? /=1 in

20 See, e.g., S. C. Frautschi, Regge poles and S-matrix Theory
(W. A. Benjamin, Inc., New York, 1963). o
2 ]n the present model, as one can verify, this is the only

partial-wave amplitude in R,/ which possesses the cut s;> 4.
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Ry741(s,51,59), or to writing the dispersion integral for
R;74 with two subtractions at s;= 0 and s1= (s+3—s5)
if A;=0. The same result also occurs in writing the dis-
persion integrals for the functions gi74i(s;) defined
through R

RlJAl(s:sl’S2)= £A1(31,S2)g1"h(s:51) ’ (36)

where!? 51(1)=1 and fo(1)=S1X'Y(Sl,Sz) (’Y is defined in
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Appendix A). The two-body discontinuity of these
amplitudes g;741 can be derived by combining Egs. (3.4),
(3.5), and (3.6). In the case which we consider (J=1,
three identical final bosons, so that g;74i=g74 for any 7),
we can write them easily. If for simplicity we drop the
index J on g74 and, except on the limits of the integrals,
the variable s, we obtain

n=-1:
2512 e+(s.eD)
discg(s1) = 2ip(s1)) M D*(sy) (g‘(s1)+2>< 3X / <p(81,82,)g1(82l)d32'> , 3.7
]3131{13 8—(s,81)
n=—1:
discg®(s1) = 2ip(sy)M D*(sy)
4512 pox(eie) — N (51,59 )v(s9/,51)52'8°(s2")+2(25) 20 (51,52 ) g (52")
X (g“(s1)+2><3><k f Y(s158)— — i ds2’> , (39
1 1 8-(8,81) 2

discgi(s1) = 2ip(s)M D*(sy)

2512 por(sisn)
1 \
X(g (Sl)+2X3Xk13K13 /. o(s1,52")

—(s,81)

where the s..(s,s1) and the meaning of the s’ paths of
integration are the same as in I; the functions ki,
K., ¢, Ny, and v are given in Appendix A.

As in I, we can make the following remarks on the
integral equations which can be built up from these
discontinuities:

(1) These integral equations can be simplified by
means of an Omnés inversion.???* This introduces the
N and D functions of the two-body scattering amplitude
M®=N/D and a natural function to work with
appears to be f2=g4D.

(2) The analytic continuation of these equations
from small [Fig. 1(b)] to decay values of s [Fig. 1(a)]
needs the consideration of the “principal” sheet?* of
the two-body discontinuity: recall that by definition,
the phase-space contour remains undistorted on this
sheet; correspondingly, the two-body discontinuity is
free from non-Landau singularity? at s;=(v/s—1)3,
whereas it would behave like k2,3 (recall that /=1) on
a nonprincipal sheet.

(3) The exchange of the order of integrations leads
to a single-variable representation (S.V.R.) of the
amplitude.?

This last property is nothing but the condition pre-
viously referred to as (a) (at this stage we assume that
the factors N and D insure the convergence of the
integral equations). Besides, condition (b) is just a con-

2 R. L. Omnés, Nuovo Cimento 8, 1244 (1958).

28T, J. R. Aitchison, Phys. Rev. 137, B1070 (1965).

24 R. C. Hwa, Phys. Rev. 134, B1086 (1964). See also Appendix
A of I, which contains further references.

2 D, B. Fairlie, P. V. Landshoff, J. Nuttall, and J. C. Polking-
horne, J. Math. Phys. 3, 594 (1962).

[ (26)112y(57',51) 558" (52')+ NV x(51,52)g*(s2')
ky'?

ds?/) , (3.9

sequence of the definition of f4 and g It remains to
examine conditions (c) and (d).

By construction, condition (d) is in part automatically
satisfied: From the amplitudes f* and g4 which result
from our iptegra.lA equations we can reconstruct, suc-
cessively, R;74, R;74 [Eq. (2.14)], Rvas [Eq. (3.1)7,
and R74 [Eq. (2.13)]; the coefficients which appear
in these combinations are generally free from any
singularity at s;=4 so that the resulting amplitudes
have the correct two-body discontinuities and satisfy
the crossing relations of Sec. II. Thus only kinematical
constraints require more attention. In terms of the f4
(or g?) these read [see Eq. (2.18)]

Vst f((Vs+ ) +HV2f (Vs+e?)=0,
e=+1. (3.10)

As one can verify, the two-body discontinuities of the
f* automatically satisfy these relations, but there is
a priori no reason why the same property holds for the
reconstructed amplitudes.

It is possible, nevertheless, to build up amplitudes
which do fulfill this condition by first writing the
Cauchy integral for the functions

(V's+€) f*(s1)+V2f'(s1)
s1—=(V/s+e)?

, (3.11)

which must be regular at s;=(+/s+¢)?% and then re-
combining the results. The amplitudes f* that one ob-
tains in this way automatically satisfy the condition
(3.10) if the inhomogeneous terms are assumed to do so.
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Their S.V.R. read finally for n=—1:

(Vs—1)2 fO(Sz')
Fo(sy)= f(s1)+2 / dsy’ OXO(sy',8,81)——
—00 D(S2 )
(Vs—1)2 fl(Szl)
+2/ dSzl 1X0(82,,S,S1) ’
—00 D(‘YZ’)
(3.12)
/oDt fo(s2")
Fis1)= for(s1)+2 f dsy’ X1(s2/,5,81)———
—00 D(S2I)
et 72
+2/ dsy’ X(s9,$,51) ,
—00 D(SZI)
where the kernels
XA ,00) = — (1) KA (s4'5,51)

+0(so") 22AM(sq')5,51)  (3.13)
satisfy the same kinematical constraints in s; as the
Fh(s1).

Similarly for =1, we have

FH(s1)= fo'(s1) +2

et 7st)
X [ dsy! X (sy/,5,51)———, (3.14)
—o0 D( 2’)
with
1X1(sq/,5,51)= — 0(—s2’) 'K1(s9/,5,51)
+0(sy’) 1AY(se,s,51) . (3.15)

The kernels 42KAt and 42A% in these equations play
the same roles as the K and A® in I. Their full ex-
pression is here rather complicated and given in
Appendix B.2¢

It is interesting to notice that for n=—1 the sub-
tractions at s;= (1/s+¢€)? have by the way increased the
convergence of the integral equations [such a property
of the combination (3.11) has already been pointed out
by Jones!s in another problem]. When N reduces to
the centrifugal factor g¢..2=Ki?/4s;, some kernels
22K A1 hecome indeed only meaningful once the sub-
tractions are done.

From Egs. (3.12)-(3.15) one may evaluate the dis-
continuity of the amplitude f* across the cut s2>9,
and then generate reduced 3 — 3 amplitudes ™4 in the
manner recalled in I [cf. (B8) and (B9) in I]. The
integral equations they satisfy have here again as in-
homogeneous terms the A4, and have the same kernels
as the integral equations for the fA The associated

26 In the expressions given in Appendix B, it appears that some
kernels contain a factor 4/s. This can be removed by defining new
amplitudes fA free from kinematical singularities in s. The pro-
cedure is the same as that followed in Sec. II, with only the roles
of /=1 and J =1 exchanged.
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amplitudes T4 [cf. Eq. (4.4) in I] are

p=-41:
_ n(se) 1
l‘pl(SZ”S)sl) = %S“———‘ ]‘pl (52/;‘9;'?1)—‘ P
ko"*D(sy) D(s1)
n=—1:
- n(sy) 1
1\1,1(32’,5,5.1): %S '—lwl(‘??l:s"sl)“*_* ’
k2/D(52/) D(A‘l)
, n(ss)
1@0(32 ,S,Sl) = %S —IIPO(S?/,\Y:SJ.) )
kz’D(Sz,) D (Sl)
3s  n(sy) 1
O‘I/1<82,,S,51)=— 4_.__01#1(32/’3’51)7___._ )
s’ ko' D(se’) D(s1)
_ 35 n(s)) 1
OFO(s2',5,81) =— —%0(sy,5,81)——
Szl kg’D(Sz’) D(Sl) N

These amplitudes satisfy integral equations whose
inhomogeneous terms are simply related to the functions
IGA(sy/,5,51)/D(s2')D(s1) considered in Appendix B
[they differ by the additional terms considered there
which remove the eventual poles of TGA4(sy,s,s1) in
s1=0 and/or so’=0]. From the ™FA one can generate
amplitudes ™ Ai(s\/,s,s;) as done in I [see in particular
Egs. (B9), (B11), and (B12) in paper I; in the present
case the superscripts IT and A give rise to extra but non-
essential complications]. Finally the full 3 — 3 ampli-
tude may be expressed as a linear combination of these
M2¥:4:. The coefficients are nothing but the & of
Eq. (3.6), the 8 of Eq. (2.13), the crossing matrices of
Eq. (2.7), and the D functions of Eq. (2.2). One can
verify that all the discontinuities of this amplitude have
just the form (if not the symmetry) expected from
three-body unitarity.?”

Finally, the examination of condition (c) leads us, as
in I, to investigate the symmetry properties of the
kernels A2X41 and in particular of the main part A2A41,
1t is shown in Appendix B that, despite their apparent
complexity, for N=K;%*/4s;, the #2AM(sq,5,5;) are
polar kernels, ie., are symmetric with respect to so’
and s; if multiplied by convenient functions of sy’ o7 51
(more precisely, they constitute a “symmetric” matrix
in the coupled case n= —1). This situation is rather the
same as that of the case J=0, /=0 and leads to the
same two possible alternatives: to work with full or
with truncated KT equations. But in the present case,
for n=—1, new choices of truncated equations appear
to be possible.? Indeed the A2A%1(sys,s;) only differ
in this case from the J= 1 projection of well-defined one-
particle exchange (OPE) processes by terms correctly
satisfying the kinematical constraints of Sec. II and

%7 G. N. Fleming, Phys. Rev. 135, B551 (1964).

% This ambiguity results from the choice /;0 and already
occurs in the simpler case J=0, J;=1 [considered, e.g., by M. O.
Taha, Nuovo Cimento 42, 201 (1966)].
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having good symmetry properties. Two ways are then
open: to include or not include these supplementary
terms into the kernels of the truncated equations; in
both cases, three-body unitarity is rigorously satisfied,
at least in the decay region, if N/gs.=n= const.
As one can verify, these two new alternatives lead to
different behaviors of R;/° at s;=0: in the first case
Ry7° behaves like a constant, while in the second it
behaves like s;.

As in I, we can also try to investigate the effects of
the singularities of the two-body forces by including
nonconstant functions #(s1). Of course, it would be
interesting to test numerically these different alterna-
tives and to compare their respective predictions as
concerns some physical quantities such as the masses
and widths of three-body dynamical resonances induced
by two-body resonant states, the Dalitz plot reparti-
tions etc. For this purpose, the three-pion system is
studied with further details in Appendix C. We espe-
cially introduce isospin and examine Bose-Einstein re-
quirements. The approximation /= 1 leads us to consider
only the quantum numbers of the pion-pion p resonance
in the two-body interaction. Such an approximation is
of great practical interest, and has already been con-
sidered elsewhere in the context of Faddeev equations.?

IV. CONCLUSION

In I and in the present paper, we have discussed in
particular cases of angular momenta an approach of
the three-body relativistic problem based only on
standard mass-shell S-matrix concepts and methods
(analyticity in simply cut planes for small values of the
external masses, analytic continuation with respect to
these masses; and dispersion relations with eventual
subtractions). Two-body unitarity is the essential input
of such an approach. Correspondingly, the amplitude
is built up by dispersing in the subenergy instead of the
total energy variable. This can be a guarantee of sim-
plicity since the associated discontinuities involve two
particles instead of three.

In a first step, one may take account only of afinite
number of subenergy partial waves. The initially double
integral equation may then be put into a single variable
integral form by an inversion of the order of integra-
tion, as studied in I. In this form the inhomogeneous
term represents only the well-known Watson final-state
formula,? while the integral term represents the cor-
rections which arise from successive rescatterings.

Such an approach has been used extensively for along
time for studying the effects of pairwise final-state
interactions®; but two essential questions remained to
be answered. Do the amplitudes also have good prop-
erties with respect to the three-body squared energy
variable? Can they be used in the neighborhood of a

20 K. M. Watson, Phys. Rev. 88, 1163 (1952).
90T, J. R. Aitchison, Nuovo Cimento 51A, 249 (1967), and
references therein.
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three-body resonance where three-body unitarity is
required to be nearly fulfilled and where the successive
rescattering corrections are certainly important?3! We
see that three-body unitarity has to be checked «
posteriori in this approach, in contradistinction to
what occurs in other mass-shell (and probably more
powerful) S-matrix approaches® in which three-body
unitarity is also an input.

We have examined this question by retaining, for the
sake of simplicity, only one partial wave in two-body
unitarity. Such an approach, as well, indeed, as any
limitation on the number of the subenergy partial
waves, suffers from the well-known drawbacks of a
Cini-Fubini-type approximation,?’:3 but an important
advantage is that it is simple enough to allow the deter-
mination of the complete analytic structure of the ampli-
tudes. In particular, the analytic properties in the total
squared energy variable, as well as the precise form of
the associated three-body discontinuity (especially the
constraints imposed to the subenergy path of integra-
tion), are all generated by the model itself.

In both cases of angular momentum which we have
considered, the same procedure has been applied for
deriving these properties from the integral equations.
Nevertheless, there is a difference. In the case J=0,
=0 the study is well supported by the comparison with
perturbation theory, and the kernels of the equations
are simply related to the Feynman triangle graph with
three scalar internal particles. No similar connection
can be made in the case J=1, /=1 since the associated
Feynman triangle graph with two scalar and one spin
I=1internal particles diverges.3

In both cases, however, we have obtained amplitudes
having approximately the same properties when the
singularities due to the two-body forces are neglected
(i.e. n=N/gs*=const® for /=0, 1): The amplitudes
have the same form as the usual isobaric amplitudes
(i.e., their angular dependences appear explicitly) they
can nearly satisfy three-body unitarity in many practi-
cal cases.

This last property requires the 3 — 3 amplitudes in-
volved in the model to be nearly symmetric with respect
to the initial and final variables. This may be satisfied
if (a) either the integral part of the equations is small
compared to the symmetric inhomogeneous term—this

8 Such questions have been first examined by G. Bonnevay, in
Proceedings of the Tenth Annual International Conference on High
Energy Physics, Rochester, 1960, edited by E. C. G. Sudarshan
(Interscience Publishers, Inc., New York, 1961); Nuovo Cimento
30, 1325 (1963).

32 S. Mandelstam, Phys. Rev. 140, B375 (1965).

# Froissart bounds in particular may only be satisfied in the
two cases of angular momentum /=0, 1 that we have considered,
but not for I>1.

3 From the integral equations derived in I, it is easy to extract
an equivalent trianglelike amplitude. However, we have not
studied in detail the further relations which may hold between
this amplitude and the true divergent Feynman graph.

% Indeed, the same result certainly remains valid for noncon-
stant but holomorphic functions #, provided that suitable sub-
tractions are done.
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occurs in particular in the weak-coupling case in which
the first iterations (especially the inhomogeneous term)
dominate; or (b) the integral term is important but
contributes essentially by its symmetric part. As
noticed in I, this occurs, for instance, if D describes a
sufficiently sharp two-body resonance.

Correspondingly, again when the singularities due to
the two-body forces are neglected, it has been possible
by truncating the integral equations to get amplitudes
satisfying three-body unitarity rigorously, at least in
the decay region. This procedure thus exhibits a region
in which two-body unitarity, together with analyticity
and a form of crossing, generates three-body unitarity.
Because an inverse statement also holds,* we would like
to claim here once again®® that under the preceding ap-
proximations there is an apparent connection between
three basic inputs of S-matrix theory: unitarity,
analyticity, and crossing.

Another interesting alternative which can be looked
for within the present model consists in working with
nonconstant » functions. This allows better convergence
properties for the nontruncated equations which, for
n=const. are of the Fredholm type only if at infinity
D(s)=0(s"*t¢), ¢>0. As regards three-body unitarity,
however, one can only claim qualitative predictions,
which must be tested on a computer. This numerical
aspect is under investigation in the particular case of the
three-pion system.

APPENDIX A: KINEMATICAL NOTATIONS

We have collected in this Appendix many notations
and formulas which would have overburdened the text.
For reasons of simplicity, the variable s, which only
plays the role of a parameter, is often omitted. The first
formulas concern the magnitudes of the five momenta
involved in Fig. 1. They may be expressed in terms of

k(a0 6%)=[a*— (b—c)*]La*— (b+0)*],
and, more precisely, (1=1, 2, 3)
ki= k(s;,s,l)
K= k(S‘i,l,l)
ks=k(s,1,1).
We specify ki, K;, and k, as positive in the decay or pro-
duction region; this region, as well as the other physical
regions associated with the quasi-four-leg processes of
Fig. 1, are delimited by the Kibble curve!?
o(s1,52)=s15253— (s—1)2=0,

with si+se+ss=s5+3; ¢ and /¢ are positive in all
the physical regions.

The trigonometrical lines of the angles used in the
text may be expressed in terms of these quantities.
First, the scattering angle of the 2 — 2 reaction [Fig.

8T, J. R. Aitchison and R. Pasquier, Phys. Rev. 152, 1274
(1966).
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1(b)] is 612, and

sin012= 2[51@(51,52)]”2//61]{1 )
cosfia= 281’)’(51,52)/]31K1
with
')’(31,32)= 32—%(S+3“S1) = %(52—'53) .
The angle Xy; of the crossing relations Eq. (2.7)
is such that
sinXe1= — 2[5 o(s1,52) |2/ brk2 ,
COoSXo1= Nx(51,52)/k1k2 ,
with
Ny (s1,82)= (s1F+5— 1) (s2Fs—1)+25(1—5).

We also needsome trigonometrical lines of the angles
a; and B; [see Fig. 2(a) and Egs. (2.16) and (2.17)].
It is sufficient to know the following relations:

— cosaz1cosay cosXay

sinay cosB;=
SinXogy

(and similar relations obtained by a cyclic permutation
over the indices), and

Cosa;= Eﬂ(ai)/ksk;, 1= 1,2,3

where 97(e;) is a polynomial with respect to the in-
variants [the dependence is more precisely linear as
regards the momentum transfers of Fig. 1(a)].

From these results, it is possible to construct explicitly
the matrix M of Eq. (2.11) and then to evaluate the
functions 874, of Eq. (2.13). These, for J=1, read!?

Brrr) P (s1,52) = [o(s1,52) ]2,

Briy D (s1,52)=[o(51,52) 1%/ k1, Broay ) (s1,82)=1/k1.

APPENDIX B: SYMMETRY OF KERNELS

We give in this Appendix the kernels involved in the
integral equations (3.12) and (3.14). They can be split
into two parts, in the same manner as the kernel of
Eq. (C1) in paper I. The first part is explicitly given by
the formulas

n=+1:

1 st(e02)  dsy' p(sy

TAl(sy/,s,51)= v )
LEMAE ’3 ’ ’

Tk o a0y ST—S1 Ri?

o XICY(sy') 1P (s2/,s1),  (B1)
wi
YPY(sos1) = o(sys), 'Cl(sy)=%ky%;  (B2)
p=—1:
11428, (s2',5,81) uyM
A3AM(sy5,51) =~ , ’ ’ ) (B3)
v1420_(s9',5,51) u_M
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where

Azad:(s2/,sysl) =

si—(VsE1)2 peeee) dsy! pn(sy)

s et

—uy !l 82C0(sy") A2P0(sy/ 51") 240 22C1(s") A2P(s9,51")
si'—(Ws1)?

ul=—1—+/s, ul=+41—+/s,

v=uOu 1—u ul=2V2.

’ /
—(s,82') S1 —$81 kl 3

b

u+°=u_°=V7,

Notice that the #.% are nothing but the coefficients
of f° and f! in the kinematical constraint relations

[Eq (3.10)]
OP%(sy’y51") = N 5 (51,52 )7 (51,59 )y (s2',51')
OCO(Szl) = 332’]32/ y
OP(sy/,51") = (51,89 )y (s',51)
0CH(se")=§V2(v/s)s ke’
1P(se' 1) = (51,59 )y (s1s52)
1C(sy")=3X2X (V2/$)ks’ ,

TP (s2y51) = (51552 )V x(s1'452) 5
1C1(52/) = %kz' .

(B4)

7 is N/qa2, N being the N function of the 2 — 2 scatter-
ing matrix with /=1, and ¢..? is the squared momentum
of particles (2) and (3) in the s; c.m. system (i.e., the
centrifugal factor for /=1). The kinematical functions
¢, N, and vy are given explicitly in Appendix A.

The second part 42KA1(sy/;s,51) of the kernel follows
from the preceding 42AA1(sy/,s,51) by replacing the in-
tegration path [s_(s,59), s4(s5,52")] by [3(s,5¢"), + 0]
just as in I (the precise meaning and the possible dis-
tortions of these contours can be specified as in that
paper).

When the effects due to the two-body forces are
neglected (i.e., #=1) the parts 42AA1 possess particular
properties of symmetry. As in I, it is convenient to
deduce them from a comparison with the J projection
(J=1 in the present case) of a well-defined OPE
amplitude.

The OPE process which we consider is illustrated in
Fig. 3. Each bubble function which depends on ¢, is
assumed to be well represented by the /=1 centrifugal
factor only. The associated amplitude thus takes the
form

1 3K1k(.§‘1 t” 1)P1(§2) 1
Q¢\9=- "
™

4:.&‘1 l"— 1
3K2’k (Szl,l”, 1)P1(21)
X .

4s 2/

(BS5)

The functions % and K; are defined in Appendix A and
the cosines 2; are associated with the invariants §; in
Fig. 3.
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Fi6. 3. The OPE process considered in Appendix B.

The J=1 projections of Q(¢,g) that it is convenient
to consider are

1
A2QA1(sy/,55,5,51,59) = — /Q(‘I';Q)
872

X Dy, [ (a1) 8(q2") JALE(q1) E(q2") ],

where q; and qo’ are taken as privileged momenta for
the final and initial states, respectively [for choice (%)
of axes, see Sec. II]. After some straightforward manip-
ulations, they may be rewritten as

32 KiK'

82Q81(sy’,55',5,51,82) = —

d10*(012)daz0* (B25")

65132/

/7

25 te
73 U 7
Xklkz, '/;_ t//_lk(sl)t ,1)]3(32 ot :l)dAzAll(x'A’l )

X0t (012" ) g0t (025”), (B6)

with
i:{:= %[Sl+82,+2—5+(1"81)(1—52/)/S:|:k1k2//3] .

The definition of the angles (name and indices) is the
same as in Appendix A, but here one mass is equal to
A/t instead of 1. By convention, the number of primes
on these angles refers to the section 2, 2/, or 2’/ of Fig.
3 to which the two associated momenta belong.

Of course, these projected amplitudes are not free
from kinematical singularities, but we may apply the
same methods as in Sec. II and define regularized ampli-
tudes by factoring 81a,™, 1=1, 2, out of suitable com-
binations of them imposed by parity conservation.
Finally, as in Eq. (3.6) we are led to consider

BaGh1(sy’,s5,51) = 22GA/ [ B1a, ™ (51,52)B14, ™ (52,53")

X £A1(Sl7s2)£Az(52/;S3/)]; (B7)

where
A28A1= %[AzQAH_ 7’(.__ )1+A1 AzQ—-A1]
= 3[Qu n(— ihis ~aQA],
with 7 defined as in Sec. II.
Indeed, it is more convenient to work with ampli-

tudes 4:GM(sy,s,s1) free from trivial numerical factors
present in the 2Gi(sy/,s,51). The %Gt are represented

by

1 dr”
AzGAl /e o) = AsPAi(s,! o0 4
(5‘2 }Sr‘l) 7rk13k2’3 ./;.;. (52 »S1, )l"—l )

(B8)



2492 R.

where the functions 22P41(sy/,s1,¢””) can be deduced {rom
Eqgs. (B6) and (B7) and for #'=1 reduce to the poly-
nomials 42P41(se,51) of Egs. (B2) and (B4).

For n=-—1, these amplitudes 2:G%(sy,s,51) can
possess poles at s;=0 and/or sy’=0, have branch
points at t=1, ie., s1=s54(s,52") [despite the pres-
ence of the factors 1/k:34/3, the points s;= (v/s1)?
and so’=(4/s==1)? are not singular], and behave at
infinity in sy (or so’) like a constant. They can thus be
rewritten in terms of dispersion integrals in the s;
plane with a subtraction which is convenient to do at
s1=(/s+1)? or sy=(y/s—1)2 We thus get

518G,
MaGh(sy/ 5,51) = l_l__l_‘__o
— (V1)
89G80 (52,5, (V/s£1)?)

$S1— (\/S:{: 1)2 84.(s,82')
A

[s1— (V/s=1)%]

AaPh(sy',51")
’3

ke —(s,82")

1 dsy
X-— ’
k1,3 (81/— 81)[31,- (\/S:l: 1)2J

wehre | s142G41| ,, —ostands for the residue of 42G41(sy’,s,51)
at s;=0, if any, and can be easily found from Eq. (B8)
(indeed, only °G° and 1G° have a pole at s;=0). The pre-
cise meaning of the s;” path of integration is unambigu-
ously determined once the ¢/ path in Eq. (B6) is given.
As one can verify,37 the —ie (physical) prescription
for the internal mass of the OPE process (Fig. 3) leads
in particular to the same s;” contours as those involved
in the integral equations (3.12) for the physical ampli-
tude f* (i.e., the amplitude f* obtained by leaving the
variables s and s; to reach their respective cuts from
above).

Now, by suitable combinations of the 4G4t given by
Eq. (BY), it is possible to reconstruct kernels 42AA:
defined through Eq. (B3) and through:

BaANI(sy,5,51) = A2CM(sy") A2 Ad(sy/,5,51)

(B9)

(B10)

It happens that these combinations are of the “kine-
matical constraints” type and such that the terms
8aGiM(sy,s,(v/s2=1)?) cancel. The remaining terms, which
alone in the end prevent the 42A%1(sy)s,5;) and the
MaGM(sy 5,51) from being equal, originate from the
presence of poles at s;=0. The important point is that
these supplementary terms have good symmetry prop-
erties with respect to the initial and final subenergy
variables, and themselves satisfy the kinematical con-
straints. As one can verify, these two properties also
hold for the 2:GA1(sy,s,s1) [the symmetry of the 4G
clearly appears in the integral form (B6) or (B8)]; the
same is then also true for the 42 AM(sy,s,51). As a con-
sequence, the 42A%1(sy,s,51) are polar kernels; inciden-

37R. Pasquier, Orsay Report No. IPNO/TH 31, 1965

(unpublished).
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tally, we also find that they satisfy the kinematical
constraints (3.10) in s;, but this property already
follows from the derivation of the integral equation
(3.12).

In the case n=+1, the symmetry of the kernel
1AY(sy,s,51) can be derived in a similar and much
simpler manner: then G(sy,s,51) has no pole in s;=0
(or so’=0), is O(1/s1) [or O(1/s¢’)] at infinity in s
(or s¢'), and can thus be identified with 1A!(sy,s,s1)
[Eq. (B10)] by an unsubtracted dispersion relation in
the s; plane. The symmetry of ! Al(sy,s,s1) then follows
from that of !G'(s¢/,s,51).

APPENDIX C: ISOSPIN AND BOSE-EINSTEIN
STATISTICS

In the present model, isospin may as well be in-
troduced by considering the quasi-four-leg process of
Fig. 1 as a decay [Fig. 1(a)] or a scattering [Fig. 1(b)].

In the context of Fig. 1(a), we are dealing with a
pseudoparticle®® of isospin 7" and charge T, decaying
into three particles of isospin /=1 and charge {,=7. As
usual, the total isospin states |77,) may be obtained
by first coupling the isospins of a pair of final particles
and then the result to the remaining isospin. According
to the choice of the final pair, different decompositions
may be obtained, and crossing relations may be written
between the isospin amplitudes. These considerations
are rather analogous to what we have encountered in
Secs. IT and III for the spin projections; the role of A;
is here played by the total isospin 7; of a pair of
particles.

The consideration of Fig. 1(b), however, allows a
more natural introduction of charge-independent ampli-
tudes. This procedure, moreover, uses more common
developments and notations. We are first led to consider
the scattering matrix elements obtained from the decay
matrix elements by crossing particle (z); according to
the usual phase convention,?4 we have

<TT,Z¢"‘ Til R l le,‘lka>
=(=)TT|Rtirtiritsriy, (C1)

where (4,7,k) stands for a cyclic permutation of (1,2,3).
These scattering matrix elements may then be expanded
over both the initial and final isospin states, in order to
exhibit charge-independent amplitudes. This gives

(TTJr- Til R l lijjlka>
= Y (TtTe—ri| TiTa)RT{T Tl tyriters),

TiTis

(C2)

where T's and T, denote the isospin and charge of the
pair (j,k) of final particles. Of course, depending on

% We do not consider the isospins of the initial particles in the
case of a production, but only the resulting isospin state | 77,).

3 de Swart, Rev. Mod. Phys. 35, 916 (1963).

“B. Diu, in Methods in Subnuclear Physics, edited by M.
Nikoli¢ (Gordon and Breach Science Publishers, Inc., New York,
1968), p..143.
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which pair (4,k) is considered, different decompositions
of R are obtained; by comparing them, one may write
crossing relations such as

R71=3_ Cr,r,R™, (C3)
T2

with Cr,r, as in Ref. (40). Here again, this condition
can be fulfilled by imposing it upon each component in
Eq. (3.2'); this gives

R71=Ro"14-Ry "'+ Re 71+ R5™
=R 4+-Ri74-3 CryrReT2+ 3 CryrgRs™3. (C4)
T2 T3

This development, as well as Egs. (C2), (2.2), and (2.9),
allows us now to examine whether in the model the full
decay amplitude R is symmetric in the exchange of two
final particles. We have, explicitly ,

(01027 T | R| q1g2g5717273)
=2 2 Dan”™*(Bs;0)dan’(0:)

T TATTl
XRTVbTi(s,5.) (=) TtiTo— 74| TiTix)

X(TiT | titrrimey, (CS)

where (,7,k) is again a cyclic permutation of (1,2,3).
Such an amplitude remains invariant under the ex-
change of particles (2) and (3) if the term =1 is in-
variant and if the terms =2 and 7=3 exchange with
each other. Look first at ¢=1: under the transforma-
tion, B: increases or decreases by , 612 becomes 7— 6;3
and the second Clebsch-Gordan coefficient is multiplied
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by (—)71; in sum, this term is invariant if it only con-
tains summation over Iy and 7% of the same parity.
Notice that this condition “/4-T even” is nothing but
the familiar Bose-Einstein requirement in a two-body
m-r channel. The exchange of the terms 7=2 and
and =3 also implies a summation over /; and 7'; of
the same parity but, in addition, requires the functions
Ry7®42T2(s 50) and R4/ %4 s(s,53) to take the same values
when the subenergies, J, /, A, and T are equal. Of
course the exchange of two other particles, (1) and (3)
for instance, gives a similar result and requires in
particular the function Ry744171(s.51) to be the same as
the two others.

It remains now to insert isospin into the integral
equations of Sec. III. As one can verify, it is sufficient
tolabel the amplitudes involved in these equations with
an additional index of isospin 7'z In Egs. (3.12) and
(3.14) in particular, we are now dealing with the ampli-
tudes fi1%171(s1) on the left-hand side and f,2271(sy’) and
fs%T1(sg’) on the right-hand side (reinstate for a mo-
ment the indices 2 and 3 on f). Thanks to Eq. (C3)
these last two amplitudes may be expressed in terms of
the “diagonal” contributions f,4272(sy’) and fAsTs(sy"),
which must be equal if the argument and all the upper
indices are the same. If we specialize to the three-pion
case with ;= 1, only one isospin state (7;= 1) is allowed
and we simply have

fdTi=Crpyp fMiTi | §=2,3

with Cryr;=1, —3, and —3 for 7=0, 1, and 2, respec-
tively. In this case, the kernels of the integral equations
for the isospin amplitudes are those given in Appendix
B multiplied by the factor Cr,r,.



